
Chapter 4: Threads

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

Objectives

 To introduce the notion of a thread—a fundamental unit of CPU

utilization that forms the basis of multithreaded computer

systems

 To discuss the APIs for the Pthreads, Windows, and Java

thread libraries

 To explore several strategies that provide implicit threading

 To examine issues related to multithreaded programming

 To cover operating system support for threads in Windows and

Linux

Threads

Threads in everyday life

Number of

threads

Threads

 A thread is the basic unit of CPU utilization

 A thread is a flow of control within a process.

 A thread comprises

 A thread ID

 Program counter

 Register set

 Stack

 Shares with the other threads belonging to the same process

 Code section

 Data section

 Other operating systems resources: files and signals

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

Multithreaded Server Architecture

Benefits

 Responsiveness – may allow continued execution if part

of process is blocked, especially important for user

interfaces

 Resource Sharing – threads share resources of process,

easier than shared memory or message passing

 Economy – cheaper than process creation, thread

switching lower overhead than context switching

 Scalability – process can take advantage of

multiprocessor architectures

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

Single and Multithreaded Processes

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems, including:

 Windows

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

 Many user-level threads mapped to

single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel

on muticore systems because only one

may be in kernel at a time

 Few systems currently use this model

 Examples:

 Solaris Green Threads

 GNU Portable Threads

One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 More concurrency than many-to-one

 Number of threads per process sometimes

restricted due to overhead

 Examples

 Windows

 Linux

 Solaris 9 and later

Many-to-Many Model

 Allows many user level threads to be

mapped to many kernel threads

 Allows the operating system to create

a sufficient number of kernel threads

 Solaris prior to version 9

 Windows with the ThreadFiber

package

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

 Specification, not implementation

 API specifies behavior of the thread library, implementation is

up to development of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Pthreads Example

Pthreads Example (Cont.)

4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Example (Cont.)

Pthreads Code for Joining 10 Threads

4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthreads Code for Joining 10 Threads

Windows Multithreaded C Program

Windows Multithreaded C Program (Cont.)

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by

underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

Java Multithreaded Program

Java Multithreaded Program (Cont.)

Demo: Java threads

 MyThread Program

 Create threads and make them sleep for a certain amount of

time

 Two threads test

 Create two threads and make them execute and sleep

interchangeably

 Multithreaded Server

 Computer square of a number given by each client

Implicit Threading

 Growing in popularity as numbers of threads increase,

 Program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and

run-time libraries rather than programmers

 Three methods explored

 Thread Pools

 OpenMP

 Grand Central Dispatch

 Other methods include Microsoft Threading Building Blocks
(TBB), java.util.concurrent package

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing

thread than create a new thread

 Allows the number of threads in the application(s) to be

bound to the size of the pool

 Separating task to be performed from mechanics of

creating task allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

Thread Pool in ASP.NET

 Source: Microsoft Tech Ed 2007 DVD: Web 405 "Building Highly Scalable ASP.NET Web Sites by
Exploiting Asynchronous Programming Models" by Jeff Prosise.

OpenMP

 Set of compiler directives and an

API for C, C++, FORTRAN

 Provides support for parallel

programming in shared-memory

environments

 Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

#pragma omp parallel for

for(i=0;i<N;i++) {

 c[i] = a[i] + b[i];

}

Run for loop in parallel

Grand Central Dispatch

 Apple technology for Mac OS X and iOS operating systems

 Extensions to C, C++ languages, API, and run-time library

 Allows identification of parallel sections

 Manages most of the details of threading

 Block is in ―^{ }‖ - ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue

 Assigned to available thread in thread pool when removed

from queue

Grand Central Dispatch

 Two types of dispatch queues:

 serial – blocks removed in FIFO order, queue is per process,

called main queue

 Programmers can create additional serial queues within

program

 concurrent – removed in FIFO order but several blocks may

be removed at a time

 Three system wide queues with priorities low, default, high

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all

threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

Signal Handling

 Signals are used in UNIX systems to notify a process that a

particular event has occurred.

 A signal handler is used to process signals. Typical flow:

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

 Every signal has default handler that kernel runs when

handling signal

 User-defined signal handler can override default

 For single-threaded, signal delivered to process

Signal Handling (Cont.)

 Where should a signal be delivered for multi-threaded?

 Possible options:

 Deliver the signal to the thread to which the signal

applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the

process

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread

 Two general approaches:

 Asynchronous cancellation terminates the target thread

immediately

 Deferred cancellation allows the target thread to periodically

check if it should be cancelled

 Pthread code to create and cancel a thread:

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending

until thread enables it

 Default type is deferred

 Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

 Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its

own copy of data

 Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

 Different from local variables

 Local variables visible only during single function

invocation

 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

Scheduler Activations

 Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

 Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

 Appears to be a virtual processor on which

process can schedule user thread to run

 Each LWP attached to kernel thread

 How many LWPs to create?

 Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

 This communication allows an application to

maintain the correct number kernel threads

Java, LPW and Kernel threads

Operating System Examples

 Windows Threads

 Linux Threads

Windows Threads

 Windows implements the Windows API – primary API for Win

98, Win NT, Win 2000, Win XP, and Win 7

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in

user mode or kernel mode

 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

 The register set, stacks, and private storage area are known as

the context of the thread

Windows Threads (Cont.)

 The primary data structures of a thread include:

 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in

kernel space

 KTHREAD (kernel thread block) – scheduling and

synchronization info, kernel-mode stack, pointer to TEB, in

kernel space

 TEB (thread environment block) – thread id, user-mode

stack, thread-local storage, in user space

Windows Threads Data Structures

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures

(shared or unique)

End of Chapter 4

