
Lesson 5: CPU Scheduling

CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Real-Time CPU Scheduling

 Operating Systems Examples

 Algorithm Evaluation

Objectives

 To introduce CPU scheduling, which is the basis for

multiprogrammed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-

scheduling algorithm for a particular system

 To examine the scheduling algorithms of several

operating systems

Basic Concepts

 Maximum CPU utilization

obtained with multiprogramming

 CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main

concern

Histogram of CPU-burst Times

Recollect from Chap.3

CPU Scheduler
 Short-term scheduler selects from among the processes in

ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 For situations 1 and 4, there is no choice in terms of

scheduling. A new process (if one exists in the ready queue)

must be selected for execution. There is a choice, however, for

situations 2 and 3.

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Consider access to shared data

 Consider preemption while in kernel mode

 Consider interrupts occurring during crucial OS activities

Preempt

 1 : to acquire (as land) by preemption

 2 : to seize upon to the exclusion of others : take for oneself <the
movement was then preempted by a lunatic fringe>

 3 : to replace with something considered to be of greater value or
priority : take precedence over <the program did not appear, having
been preempted by a baseball game — Robert MacNeil>

 4 : to gain a commanding or preeminent place in

 5 : to prevent from happening or taking place : forestall, preclude

 From Merriam-Webster Online Dictionary

Non-preemptive scheduling

 Under non-preemptive scheduling, once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or by switching to

the waiting state.

 This scheduling method was used by Microsoft Windows 3.x;

 Windows 95 introduced preemptive scheduling, and all

subsequent versions of Windows operating systems have

used preemptive scheduling.

 The Mac OS X operating system for the Macintosh uses

preemptive scheduling; previous versions of the Macintosh

operating system relied on cooperative scheduling.

Dispatcher

 Dispatcher module gives control of the CPU to the process

selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to

restart that program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

Dispatcher and scheduler in action

Dispatcher and scheduler in action:

Two processes sharing the CPU

Scheduling Criteria

 Different CPU scheduling algorithms have different properties, and

the choice of a particular algorithm may favor one class of

processes over another.

 In choosing which algorithm to use in a particular situation, we must

consider the properties of the various algorithms.

 (Analysis for your project)

 Many criteria have been suggested for comparing CPU scheduling

algorithms.

 Which characteristics are used for comparison can make a

substantial difference in which algorithm is judged to be best.

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their

execution per time unit

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting

in the ready queue

 Response time – amount of time it takes from when a

request was submitted until the first response is produced,

not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

Scheduling Algorithm Goals

CPU scheduling deals with the problem of deciding which of the
processes in the ready queue is to be allocated the CPU. There
are many different CPU scheduling algorithms.

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time

 P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest

time

 SJF is optimal – gives minimum average waiting time for a given

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

Example of SJF

 Process Arrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

  .1 1 nnn t  

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

 Since both  and (1 - ) are less than or equal to 1, each
successive term has less weight than its predecessor

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to

the analysis

 Process Arrival Time Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = P1 + P2 + P3 + P4 / 4

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 (it is told that when they shut down the IBM 7094 at MIT in

1973, they found a low-priority process that had been submitted

in 1967 and had not yet been run. )

 Solution  Aging – as time progresses increase the priority of the

process

Aging

 Aging is a technique of gradually increasing the priority

of processes that wait in the system for a long time.

 For example, if priorities range from 127 (low) to 0

(high), we could increase the priority of a waiting

process by 1 every 15 minutes.

 Eventually, even a process with an initial priority of

127 would have the highest priority in the system and

would be executed.

Example of Priority Scheduling

 Process Burst Time Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

Round Robin (RR)

 Each process gets a small unit of CPU time (time

quantum q), usually 10-100 milliseconds.

 After this time has elapsed, the process is preempted and

added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time

in chunks of at most q time units at once. No process

waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context

switch, otherwise overhead is too high

Round-Robin
A process keeps the

CPU for a quantum

of time q

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e.,

 80% to foreground in RR

 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various queues; aging can

be implemented this way

 Multilevel-feedback-queue scheduler defined by the

following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will

enter when that process needs service

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

 At Q1 job receives 16 additional

milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library

schedules user-level threads to run on LWP

 Known as process-contention scope (PCS) since

scheduling competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-

contention scope (SCS) – competition among all threads in

system

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

All schedulers comparison

There is no universal “best” scheduling algorithm, and many

operating systems use extended or combinations of the scheduling
algorithms above.

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are

available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses

the system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has

its own private queue of ready processes

 Currently, most common

 Variations including processor sets

Processor affinity

 Processor affinity – process has affinity for processor on which it is

currently running

 Soft affinity - The operating system has a policy of attempting to keep a

process running on the same processor — but not guaranteeing that it will

do so

 Hard affinity – Some systems provide system calls that allowi a process to

specify a subset of processors on which it may run.

 Many systems provide both soft and hard affinity.

 For example, Linux implements soft affinity, but it also provides the

 sched_setaffinity() system call, which supports hard affinity.

NUMA

 The main-memory architecture of a system can affect

processor affinity.

 Non-uniform memory access (NUMA), in which a CPU has

faster access to some parts of main memory than to other

parts.

 Typically, this occurs in systems containing combined CPU

and memory boards.

 CPUs on a board can access the memory on that board

faster than they can access memory on other boards in the

system.

 If the operating system’s CPU scheduler and memory-

placement algorithms work together, then a process that is

assigned affinity to a particular CPU can be allocated memory

on the board where that CPU resides.

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

Multiple-Processor Scheduling – Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly

distributed

 Push migration – periodic task checks load on each

processor, and if found pushes task from overloaded

CPU to other CPUs

 Pull migration – idle processors pulls waiting task from

busy processor

Multicore Processors

 Recent trend to place multiple processor cores on same

physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress

on another thread while memory retrieve happens

Multithreaded Multicore System

Real-Time CPU Scheduling

 Can present obvious

challenges

 Soft real-time systems – no

guarantee as to when critical

real-time process will be

scheduled

 Hard real-time systems –

task must be serviced by its

deadline

 Two types of latencies affect

performance

1. Interrupt latency – time from

arrival of interrupt to start of

routine that services interrupt

2. Dispatch latency – time for

schedule to take current process

off CPU and switch to another

Real-Time CPU Scheduling (Cont.)

 Conflict phase of

dispatch latency:

1. Preemption of

any process

running in kernel

mode

2. Release by low-

priority process

of resources

needed by high-

priority processes

Priority-based Scheduling

 For real-time scheduling, scheduler must support preemptive, priority-

based scheduling

 But only guarantees soft real-time

 For hard real-time must also provide ability to meet deadlines

 Processes have new characteristics: periodic ones require CPU at

constant intervals or periods

 Has processing time t, deadline d, period p

 0 ≤ t ≤ d ≤ p

 Rate of periodic task is 1/p

Admission-control algorithm

 What is unusual about this form of scheduling is that a

process may have to announce its deadline requirements

to the scheduler.

 Then, using a technique known as an admission-control

algorithm, the scheduler does one of two things.

 It either admits the process, guaranteeing that the process

will complete on time, or rejects the request as impossible if it

cannot guarantee that the task will be serviced by its deadline.

Rate Montonic Scheduling

 A priority is assigned based on the inverse of its period

 Shorter periods = higher priority;

 Longer periods = lower priority

 P1 is assigned a higher priority than P2:

 The periods for P1 and P2 are 50 and 100

The deadline for each process requires that it complete
its CPU burst by the start of its next period (t1 = 20 for
P1 and t2 = 35 for P2)

Missed Deadlines with Rate Monotonic Scheduling

P1 has values of p1 = 50 and t1 = 25 and that P2 has
values of p2 = 80 and t2 = 35.

Earliest Deadline First Scheduling (EDF)

 Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

 the later the deadline, the lower the priority

Proportional Share Scheduling

 T shares are allocated among all processes in the system

 An application receives N shares where N < T

 This ensures each application will receive N / T of the total

processor time

 Assume that a total of T = 100 shares is to be divided among

three processes, A, B, and C.

 A is assigned 50 shares, B is assigned 15 shares, and C is

assigned 20 shares.

 This scheme ensures that A will have 50 percent of total

processor time, B will have 15 percent, and C will have 20

percent.

POSIX Real-Time Scheduling

 The POSIX.1b standard

 API provides functions for managing real-time threads

 Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a

FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for

threads of equal priority

 Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr,

int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,

int policy)

POSIX Real-Time Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{

 int i, policy;

 pthread_t_tid[NUM_THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* get the current scheduling policy */

 if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

 fprintf(stderr, "Unable to get policy.\n");

 else {

 if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");

 else if (policy == SCHED_RR) printf("SCHED_RR\n");

 else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");

 }

POSIX Real-Time Scheduling API (Cont.)

 /* set the scheduling policy - FIFO, RR, or OTHER */

 if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)

 fprintf(stderr, "Unable to set policy.\n");

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

Operating System Examples

 Linux scheduling

 Windows scheduling

 Solaris scheduling

Linux Scheduling Through Version 2.5

 Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm

 Version 2.5 moved to constant order O(1) scheduling time

 Preemptive, priority based

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

 Map into global priority with numerically lower values indicating higher
priority

 Higher priority gets larger q

 Task run-able as long as time left in time slice (active)

 If no time left (expired), not run-able until all other tasks use their slices

 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

 Worked well, but poor response times for interactive processes

Linux Scheduling in Version 2.6.23 +

 Completely Fair Scheduler (CFS)

 Scheduling classes

 Each has specific priority

 Scheduler picks highest priority task in highest scheduling class

 Rather than quantum based on fixed time allotments, based on proportion of CPU
time

 2 scheduling classes included, others can be added

1. default

2. real-time

 Quantum calculated based on nice value from -20 to +19

 Lower value is higher priority

 Calculates target latency – interval of time during which task should run at least
once

 Target latency can increase if say number of active tasks increases

 CFS scheduler maintains per task virtual run time in variable vruntime

 Associated with decay factor based on priority of task – lower priority is higher
decay rate

 Normal default priority yields virtual run time = actual run time

 To decide next task to run, scheduler picks task with lowest virtual run time

CFS Performance: balanced tree

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b

 Real-time tasks have static priorities

 Real-time plus normal map into global priority scheme

 Nice value of -20 maps to global priority 100

 Nice value of +19 maps to priority 139

Windows Scheduling

 Windows uses priority-based preemptive scheduling

 Highest-priority thread runs next

 Dispatcher is scheduler

 Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

 Real-time threads can preempt non-real-time

 32-level priority scheme

 Variable class is 1-15, real-time class is 16-31

 Priority 0 is memory-management thread

 Queue for each priority

 If no run-able thread, runs idle thread

Windows Priority Classes

 Win32 API identifies several priority classes to which a process can belong

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME

 A thread within a given priority class has a relative priority

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,

LOWEST, IDLE

 Priority class and relative priority combine to give numeric priority

 Base priority is NORMAL within the class

 If quantum expires, priority lowered, but never below base

Windows Priority Classes (Cont.)

 If wait occurs, priority boosted depending on what was waited for

 Foreground window given 3x priority boost

 Windows 7 added user-mode scheduling (UMS)

 Applications create and manage threads independent of kernel

 For large number of threads, much more efficient

 UMS schedulers come from programming language libraries like

C++ Concurrent Runtime (ConcRT) framework

Windows Priorities

Solaris

 Priority-based scheduling

 Six classes available

 Time sharing (default) (TS)

 Interactive (IA)

 Real time (RT)

 System (SYS)

 Fair Share (FSS)

 Fixed priority (FP)

 Given thread can be in one class at a time

 Each class has its own scheduling algorithm

 Time sharing is multi-level feedback queue

 Loadable table configurable by sysadmin

Solaris Dispatch Table

Solaris Scheduling

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-thread global

priority

 Thread with highest priority runs next

 Runs until (1) blocks, (2) uses time slice, (3) preempted by

higher-priority thread

 Multiple threads at same priority selected via RR

Algorithm Evaluation

 How to select CPU-scheduling algorithm for an OS?

 Determine criteria, then evaluate algorithms

 Deterministic modeling

 Type of analytic evaluation

 Takes a particular predetermined workload and defines the

performance of each algorithm for that workload

 Consider 5 processes arriving at time 0:

Deterministic Evaluation

 For each algorithm, calculate minimum average waiting time

 Simple and fast, but requires exact numbers for input, applies only to

those inputs

 FCS is 28ms:

 Non-preemptive SFJ is 13ms:

 RR is 23ms:

Simulations

 Simulations more accurate

 Programmed model of computer system

 Clock is a variable

 Gather statistics indicating algorithm performance

 Data to drive simulation gathered via

 Random number generator according to probabilities

 Distributions defined mathematically or empirically

 Trace tapes record sequences of real events in real systems

Evaluation of CPU Schedulers by Simulation

Implementation

 Even simulations have limited accuracy

 Just implement new scheduler and test in real systems

 High cost, high risk

 Environments vary

 Most flexible schedulers can be modified per-site or per-system

 Or APIs to modify priorities

 But again environments vary

End of Lesson 5

Chapter 6

