
Lesson 5:  CPU Scheduling 



CPU Scheduling 

 Basic Concepts 

 Scheduling Criteria  

 Scheduling Algorithms 

 Thread Scheduling 
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 Real-Time CPU Scheduling 

 Operating Systems Examples 
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Objectives 

 To introduce CPU scheduling, which is the basis for 

multiprogrammed operating systems 

 To describe various CPU-scheduling algorithms 

 To discuss evaluation criteria for selecting a CPU-

scheduling algorithm for a particular system 

 To examine the scheduling algorithms of several 

operating systems 



Basic Concepts 

 Maximum CPU utilization 

obtained with multiprogramming 

 CPU–I/O Burst Cycle – Process 

execution consists of a cycle of 

CPU execution and I/O wait 

 CPU burst followed by I/O burst 

 CPU burst distribution is of main 

concern 

 



Histogram of CPU-burst Times 



Recollect from Chap.3 

 



CPU Scheduler 
 Short-term scheduler selects from among the processes in 

ready queue, and allocates the CPU to one of them 

 Queue may be ordered in various ways 

 CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state 

2. Switches from running to ready state 

3. Switches from waiting to ready 

4. Terminates 

 For situations 1 and 4, there is no choice in terms of 

scheduling. A new process (if one exists in the ready queue) 

must be selected for execution. There is a choice, however, for 

situations 2 and 3. 

 Scheduling under 1 and 4 is nonpreemptive 

 All other scheduling is preemptive 

 Consider access to shared data 

 Consider preemption while in kernel mode 

 Consider interrupts occurring during crucial OS activities 



Preempt 

 1 : to acquire (as land) by preemption 
 

 2 : to seize upon to the exclusion of others : take for oneself <the 
movement was then preempted by a lunatic fringe> 
 

 3 : to replace with something considered to be of greater value or 
priority : take precedence over <the program did not appear, having 
been preempted by a baseball game — Robert MacNeil> 
 

 4 : to gain a commanding or preeminent place in 
 

 5 : to prevent from happening or taking place : forestall, preclude  

 

 From Merriam-Webster Online Dictionary 



Non-preemptive scheduling 

 Under non-preemptive scheduling, once the CPU has been 

allocated to a process, the process keeps the CPU until it 

releases the CPU either by terminating or by switching to 

the waiting state.  

 

 This scheduling method was used by Microsoft Windows 3.x;  

 Windows 95 introduced preemptive scheduling, and all 

subsequent versions of Windows operating systems have 

used preemptive scheduling.  

 The Mac OS X operating system for the Macintosh uses 

preemptive scheduling; previous versions of the Macintosh 

operating system relied on cooperative scheduling.  



Dispatcher 

 Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves: 

 switching context 

 switching to user mode 

 jumping to the proper location in the user program to 

restart that program 

 

 Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running 



Dispatcher and scheduler in action 



 

Dispatcher and scheduler in action:  

Two processes sharing the CPU 



Scheduling Criteria 

 Different CPU scheduling algorithms have different properties, and 

the choice of a particular algorithm may favor one class of 

processes over another.  

 In choosing which algorithm to use in a particular situation, we must 

consider the properties of the various algorithms. 

 (Analysis for your project) 

 Many criteria have been suggested for comparing CPU scheduling 

algorithms. 

 Which characteristics are used for comparison can make a 

substantial difference in which algorithm is judged to be best. 



Scheduling Criteria 

 CPU utilization – keep the CPU as busy as possible 

 Throughput – # of processes that complete their 

execution per time unit 

 Turnaround time – amount of time to execute a particular 

process 

 Waiting time – amount of time a process has been waiting 

in the ready queue 

 Response time – amount of time it takes from when a 

request was submitted until the first response is produced, 

not output  (for time-sharing environment) 



Scheduling Algorithm Optimization Criteria 

 Max CPU utilization 

 Max throughput 

 Min turnaround time  

 Min waiting time  

 Min response time 



Scheduling Algorithm Goals 

CPU scheduling deals with the problem of deciding which of the 
processes in the ready queue is to be allocated the CPU. There 
are many different CPU scheduling algorithms. 



First- Come, First-Served (FCFS) Scheduling 

  Process Burst Time  

   P1 24 

   P2  3 

   P3  3  

 Suppose that the processes arrive in the order: P1 , P2 , P3   

The Gantt Chart for the schedule is: 
 
 
 
 
 

 

 Waiting time for P1  = 0; P2  = 24; P3 = 27 

 Average waiting time:  (0 + 24 + 27)/3 = 17 
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FCFS Scheduling (Cont.) 

Suppose that the processes arrive in the order: 

   P2 , P3 , P1  

 The Gantt chart for the schedule is: 

 

 

 

 

 Waiting time for P1 = 6; P2 = 0; P3 = 3 

 Average waiting time:   (6 + 0 + 3)/3 = 3 

 Much better than previous case 

 Convoy effect - short process behind long process 

 Consider one CPU-bound and many I/O-bound processes 

P
1

0 3 6 30

P
2

P
3



Shortest-Job-First (SJF) Scheduling 

 Associate with each process the length of its next CPU burst 

  Use these lengths to schedule the process with the shortest 

time 

 

 SJF is optimal – gives minimum average waiting time for a given 

set of processes 

 The difficulty is knowing the length of the next CPU request 

 Could ask the user 



Example of SJF 

                       Process  Arrival Time Burst Time 

               P1 0.0 6 

              P2  2.0 8 

              P3 4.0 7 

              P4 5.0 3 

 

 SJF scheduling chart 

 

 

 

 

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 
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Determining Length of Next CPU Burst 

 Can only estimate the length – should be similar to the previous one 

 Then pick process with shortest predicted next CPU burst 

 

 Can be done by using the length of previous CPU bursts, using 

exponential averaging 

 

 

 

 

 Commonly, α set to ½ 

 Preemptive version called shortest-remaining-time-first 
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Prediction of the Length of the Next CPU Burst 



Examples of Exponential Averaging 

  =0 

 n+1 = n 

 Recent history does not count 

  =1 

  n+1 =  tn 

 Only the actual last CPU burst counts 

 If we expand the formula, we get: 

 

 

 

 Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor 

 



Example of Shortest-remaining-time-first 

 Now we add the concepts of varying arrival times and preemption to 

the analysis 

           Process  Arrival Time Burst Time 

   P1 0 8 

   P2  1 4 

   P3 2 9 

   P4 3 5 

 Preemptive SJF Gantt Chart 

 

 

 

 Average waiting time = P1 + P2 + P3 + P4 / 4 

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 

msec 
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Priority Scheduling 

 A priority number (integer) is associated with each process 
 

 The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority) 

 Preemptive 

 Nonpreemptive 
 

 SJF is priority scheduling where priority is the inverse of predicted 

next CPU burst time 
 

 Problem  Starvation – low priority processes may never execute 

 (it is told that when they shut down the IBM 7094 at MIT in 

1973, they found a low-priority process that had been submitted 

in 1967 and had not yet been run.  ) 
 

 Solution  Aging – as time progresses increase the priority of the 

process 

 



Aging 

 Aging is a technique of gradually increasing the priority 

of processes that wait in the system for a long time.  

 For example, if priorities range from 127 (low) to 0 

(high), we could increase the priority of a waiting 

process by 1 every 15 minutes.  

 Eventually, even a process with an initial priority of 

127 would have the highest priority in the system and 

would be executed. 



Example of Priority Scheduling 

           Process Burst Time Priority 

   P1 10 3 

   P2  1 1 

   P3 2 4 

   P4 1 5 

  P5 5 2 

 

 Priority scheduling Gantt Chart 

 

 

 

 

 Average waiting time = 8.2 msec 



Round Robin (RR) 

 Each process gets a small unit of CPU time (time 

quantum q), usually 10-100 milliseconds.   

 After this time has elapsed, the process is preempted and 

added to the end of the ready queue. 

 If there are n processes in the ready queue and the time 

quantum is q, then each process gets 1/n of the CPU time 

in chunks of at most q time units at once.  No process 

waits more than (n-1)q time units. 

 Timer interrupts every quantum to schedule next process 

 Performance 

 q large  FIFO 

 q small  q must be large with respect to context 

switch, otherwise overhead is too high 



Round-Robin 
A process keeps the 

CPU for a quantum 

of time q 



Example of RR with Time Quantum = 4 

  Process Burst Time 

  P1 24 

   P2  3 

   P3 3  

 The Gantt chart is:  
 
 
 
 
 
 

 Typically, higher average turnaround than SJF, but better 
response 

 q should be large compared to context switch time 

 q usually 10ms to 100ms, context switch < 10 usec 
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Time Quantum and Context Switch Time 



Turnaround Time Varies With The Time Quantum 

80% of CPU bursts 
should be shorter than q 



Multilevel Queue 

 Ready queue is partitioned into separate queues, eg: 

 foreground (interactive) 

 background (batch) 

 Process permanently in a given queue 

 Each queue has its own scheduling algorithm: 

 foreground – RR 

 background – FCFS 

 Scheduling must be done between the queues: 

 Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 

 Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e.,  

 80% to foreground in RR 

 20% to background in FCFS  



Multilevel Queue Scheduling 



Multilevel Feedback Queue 

 A process can move between the various queues; aging can 

be implemented this way 

 Multilevel-feedback-queue scheduler defined by the 

following parameters: 

 number of queues 

 scheduling algorithms for each queue 

 method used to determine when to upgrade a process 

 method used to determine when to demote a process 

 method used to determine which queue a process will 

enter when that process needs service 



Example of Multilevel Feedback Queue 

 Three queues:  

 Q0 – RR with time quantum 8 

milliseconds 

 Q1 – RR time quantum 16 milliseconds 

 Q2 – FCFS 

 

 Scheduling 

 A new job enters queue Q0 

 When it gains CPU, job receives 8 

milliseconds 

 If it does not finish in 8 

milliseconds, job is moved to 

queue Q1 

 At Q1 job receives 16 additional 

milliseconds 

 If it still does not complete, it is 

preempted and moved to queue Q2 



Thread Scheduling 

 Distinction between user-level and kernel-level threads 

 When threads supported, threads scheduled, not processes 

 Many-to-one and many-to-many models, thread library 

schedules user-level threads to run on LWP 

 Known as process-contention scope (PCS) since 

scheduling competition is within the process 

 Typically done via priority set by programmer 

 Kernel thread scheduled onto available CPU is system-

contention scope (SCS) – competition among all threads in 

system 



Pthread Scheduling 

 API allows specifying either PCS or SCS during thread creation 

 PTHREAD_SCOPE_PROCESS schedules threads using 

PCS scheduling 

 PTHREAD_SCOPE_SYSTEM schedules threads using 

SCS scheduling 

 Can be limited by OS – Linux and Mac OS X only allow 

PTHREAD_SCOPE_SYSTEM 



Pthread Scheduling API 
#include <pthread.h>  

#include <stdio.h>  

#define NUM_THREADS 5  

int main(int argc, char *argv[]) {  

   int i, scope; 

   pthread_t tid[NUM THREADS];  

   pthread_attr_t attr;  

   /* get the default attributes */  

   pthread_attr_init(&attr);  

   /* first inquire on the current scope */ 

   if (pthread_attr_getscope(&attr, &scope) != 0)  

      fprintf(stderr, "Unable to get scheduling scope\n");  

   else {  

      if (scope == PTHREAD_SCOPE_PROCESS)  

         printf("PTHREAD_SCOPE_PROCESS");  

      else if (scope == PTHREAD_SCOPE_SYSTEM)  

         printf("PTHREAD_SCOPE_SYSTEM");  

      else 

         fprintf(stderr, "Illegal scope value.\n");  

   }  



Pthread Scheduling API 

   /* set the scheduling algorithm to PCS or SCS */  

   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);  

   /* create the threads */ 

   for (i = 0; i < NUM_THREADS; i++)  

      pthread_create(&tid[i],&attr,runner,NULL);  

   /* now join on each thread */ 

   for (i = 0; i < NUM_THREADS; i++)  

      pthread_join(tid[i], NULL);  

}  

/* Each thread will begin control in this function */  

void *runner(void *param) 

{  

   /* do some work ... */  

   pthread_exit(0);  

}  



All schedulers comparison 

There is no universal “best” scheduling algorithm, and many  

operating systems use extended or combinations of the scheduling 
algorithms above.  



Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are 

available 

 Homogeneous processors within a multiprocessor 

 Asymmetric multiprocessing – only one processor accesses 

the system data structures, alleviating the need for data sharing 

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has 

its own private queue of ready processes 

 Currently, most common 

 Variations including processor sets 



Processor affinity 

 Processor affinity – process has affinity for processor on which it is 

currently running 

 

 Soft affinity  - The operating system has a policy of attempting to keep a 

process running on the same processor — but not guaranteeing that it will 

do so 

 

 Hard affinity – Some systems provide system calls that allowi a process to 

specify a subset of processors on which it may run.  

 

 Many systems provide both soft and hard affinity.  

 For example, Linux implements soft affinity, but it also provides the  

 sched_setaffinity() system call, which supports hard affinity. 

 



NUMA 

 The main-memory architecture of a system can affect 

processor affinity. 

 Non-uniform memory access (NUMA), in which a CPU has 

faster access to some parts of main memory than to other 

parts.  

 Typically, this occurs in systems containing combined CPU 

and memory boards. 

 CPUs on a board can access the memory on that board 

faster than they can access memory on other boards in the 

system. 

 If the operating system’s CPU scheduler and memory-

placement algorithms work together, then a process that is 

assigned affinity to a particular CPU can be allocated memory 

on the board where that CPU resides. 



NUMA and CPU Scheduling 

Note that memory-placement algorithms can also consider affinity 



Multiple-Processor Scheduling – Load Balancing 

 If SMP, need to keep all CPUs loaded for efficiency 

 Load balancing attempts to keep workload evenly 

distributed 

 Push migration – periodic task checks load on each 

processor, and if found pushes task from overloaded 

CPU to other CPUs 

 Pull migration – idle processors pulls waiting task from 

busy processor 
 



Multicore Processors 

 Recent trend to place multiple processor cores on same 

physical chip 

 

 Faster and consumes less power 

 

 Multiple threads per core also growing 

 Takes advantage of memory stall to make progress 

on another thread while memory retrieve happens 

  



Multithreaded Multicore System 



Real-Time CPU Scheduling 

 Can present obvious 

challenges 

 Soft real-time systems – no 

guarantee as to when critical 

real-time process will be 

scheduled 

 Hard real-time systems – 

task must be serviced by its 

deadline 

 Two types of latencies affect 

performance 

1. Interrupt latency – time from 

arrival of interrupt to start of 

routine that services interrupt 

2. Dispatch latency – time for 

schedule to take current process 

off CPU and switch to another 

 

  



Real-Time CPU Scheduling (Cont.) 

 Conflict phase of 

dispatch latency: 

1. Preemption of 

any process 

running in kernel 

mode 

2. Release by low-

priority process 

of resources 

needed by high-

priority processes 

 

  



Priority-based Scheduling 

 For real-time scheduling, scheduler must support preemptive, priority-

based scheduling 

 But only guarantees soft real-time 

 For hard real-time must also provide ability to meet deadlines 

 Processes have new characteristics: periodic ones require CPU at 

constant intervals or periods 

 Has processing time t, deadline d, period p 

 0 ≤ t ≤ d ≤ p 

 Rate of periodic task is 1/p 

 

 

  



Admission-control algorithm 

 What is unusual about this form of scheduling is that a 

process may have to announce its deadline requirements 

to the scheduler.  

 

 Then, using a technique known as an admission-control 

algorithm, the scheduler does one of two things.  

 

 It either admits the process, guaranteeing that the process 

will complete on time, or rejects the request as impossible if it 

cannot guarantee that the task will be serviced by its deadline. 



Rate Montonic Scheduling 

 A priority is assigned based on the inverse of its period 
 

 Shorter periods = higher priority; 
 

 Longer periods = lower priority 
 

 P1 is assigned a higher priority than P2:  

 The periods for P1 and P2 are 50 and 100 

 

The deadline for each process requires that it complete 
its CPU burst by the start of its next period (t1 = 20 for 
P1 and t2 = 35 for P2) 



Missed Deadlines with Rate Monotonic Scheduling 

P1 has values of p1 = 50 and t1 = 25 and that P2 has 
values of p2 = 80 and t2 = 35. 



Earliest Deadline First Scheduling (EDF) 

 Priorities are assigned according to deadlines: 

 

the earlier the deadline, the higher the priority; 

 the later the deadline, the lower the priority 



Proportional Share Scheduling 

 T shares are allocated among all processes in the system 

 

 An application receives N shares where N < T 

 

 This ensures each application will receive N / T of the total 

processor time 

 

 Assume that a total of T = 100 shares is to be divided among 

three processes, A, B, and C.  

 A is assigned 50 shares, B is assigned 15 shares, and C is 

assigned 20 shares.  

 This scheme ensures that A will have 50 percent of total 

processor time, B will have 15 percent, and C will have 20 

percent. 



POSIX Real-Time Scheduling 

 The POSIX.1b standard 

 API provides functions for managing real-time threads 

 Defines two scheduling classes for real-time threads: 

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a 

FIFO queue. There is no time-slicing for threads of equal priority 

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for 

threads of equal priority 

 Defines two functions for getting and setting scheduling policy: 

1. pthread_attr_getsched_policy(pthread_attr_t *attr, 

int *policy)  

2. pthread_attr_setsched_policy(pthread_attr_t *attr, 

int policy)  



POSIX Real-Time Scheduling API 

#include <pthread.h>  

#include <stdio.h>  

#define NUM_THREADS 5  

int main(int argc, char *argv[])  

{  

   int i, policy; 

   pthread_t_tid[NUM_THREADS];  

   pthread_attr_t attr;  

   /* get the default attributes */  

   pthread_attr_init(&attr);  

   /* get the current scheduling policy */ 

   if (pthread_attr_getschedpolicy(&attr, &policy) != 0)  

      fprintf(stderr, "Unable to get policy.\n");  

   else {  

      if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");  

      else if (policy == SCHED_RR) printf("SCHED_RR\n");  

      else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");  

   }  



POSIX Real-Time Scheduling API (Cont.) 

   /* set the scheduling policy - FIFO, RR, or OTHER */  

   if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)  

      fprintf(stderr, "Unable to set policy.\n");  

   /* create the threads */ 

   for (i = 0; i < NUM_THREADS; i++)  

      pthread_create(&tid[i],&attr,runner,NULL);  

   /* now join on each thread */ 

   for (i = 0; i < NUM_THREADS; i++)  

      pthread_join(tid[i], NULL);  

} 

  

/* Each thread will begin control in this function */  

void *runner(void *param) 

{  

   /* do some work ... */  

   pthread_exit(0);  

}  



Operating System Examples 

 

 Linux scheduling 

 

 Windows scheduling 

 

 Solaris scheduling 



Linux Scheduling Through Version 2.5 

 Prior to kernel version 2.5, ran variation of standard UNIX 
scheduling algorithm 

 Version 2.5 moved to constant order O(1) scheduling time 

 Preemptive, priority based 

 Two priority ranges: time-sharing and real-time 

 Real-time range from 0 to 99 and nice value from 100 to 140 

 Map into  global priority with numerically lower values indicating higher 
priority 

 Higher priority gets larger q 

 Task run-able as long as time left in time slice (active) 

 If no time left (expired), not run-able until all other tasks use their slices 

 All run-able tasks tracked in per-CPU runqueue data structure 

 Two priority arrays (active, expired) 

 Tasks indexed by priority 

 When no more active, arrays are exchanged 

 Worked well, but poor response times for interactive processes 

 



Linux Scheduling in Version 2.6.23 + 

 Completely Fair Scheduler (CFS) 

 Scheduling classes 

 Each has specific priority 

 Scheduler picks highest priority task in highest scheduling class 

 Rather than quantum based on fixed time allotments, based on proportion of CPU 
time 

 2 scheduling classes included, others can be added 

1. default 

2. real-time 

 Quantum calculated based on nice value from -20 to +19 

 Lower value is higher priority 

 Calculates target latency – interval of time during which task should run at least 
once 

 Target latency can increase if say number of active tasks increases 

 CFS scheduler maintains per task virtual run time in variable vruntime 

 Associated with decay factor based on priority of task – lower priority is higher 
decay rate 

 Normal default priority yields virtual run time = actual run time 

 To decide next task to run, scheduler picks task with lowest virtual run time 

 

 

 



CFS Performance: balanced tree 



Linux Scheduling (Cont.) 

 Real-time scheduling according to POSIX.1b 

 Real-time tasks have static priorities 

 Real-time plus normal map into global priority scheme 

 Nice value of -20 maps to global priority 100 

 Nice value of +19 maps to priority 139 

 



Windows Scheduling 

 Windows uses priority-based preemptive scheduling 

 Highest-priority thread runs next 

 Dispatcher is scheduler 

 Thread runs until (1) blocks, (2) uses time slice, (3) 

preempted by higher-priority thread 

 Real-time threads can preempt non-real-time 

 32-level priority scheme 

 Variable class is 1-15, real-time class is 16-31 

 Priority 0 is memory-management thread 

 Queue for each priority 

 If no run-able thread, runs idle thread 



Windows Priority Classes 

 Win32 API identifies several priority classes to which a process can belong 

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS 

 All are variable except REALTIME 

 A thread within a given priority class has a relative priority 

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, 

LOWEST, IDLE 

 Priority class and relative priority combine to give numeric priority 

 Base priority is NORMAL within the class 

 If quantum expires, priority lowered, but never below base 



Windows Priority Classes (Cont.) 

 

 If wait occurs, priority boosted depending on what was waited for 

 Foreground window given 3x priority boost 

 Windows 7 added user-mode scheduling (UMS)  

 Applications create and manage threads independent of kernel 

 For large number of threads, much more efficient 

 UMS schedulers come from programming language libraries like                                         

C++ Concurrent Runtime (ConcRT) framework 



Windows Priorities 



Solaris 

 Priority-based scheduling 

 Six classes available 

 Time sharing (default) (TS) 

 Interactive (IA) 

 Real time (RT) 

 System (SYS) 

 Fair Share (FSS) 

 Fixed priority (FP) 

 Given thread can be in one class at a time 

 Each class has its own scheduling algorithm 

 Time sharing is multi-level feedback queue 

 Loadable table configurable by sysadmin 

 

 



Solaris Dispatch Table  



Solaris Scheduling 



Solaris Scheduling (Cont.) 

 Scheduler converts class-specific priorities into a per-thread global 

priority 

 Thread with highest priority runs next 

 Runs until (1) blocks, (2) uses time slice, (3) preempted by 

higher-priority thread 

 Multiple threads at same priority selected via RR 

 



Algorithm Evaluation 

 How to select CPU-scheduling algorithm for an OS? 

 Determine criteria, then evaluate algorithms 

 Deterministic modeling 

 Type of analytic evaluation 

 Takes a particular predetermined workload and defines the 

performance of each algorithm  for that workload 

 Consider 5 processes arriving at time 0: 



Deterministic Evaluation 

 For each algorithm, calculate minimum average waiting time 

 Simple and fast, but requires exact numbers for input, applies only to 

those inputs 

 FCS is 28ms: 

 

 

 Non-preemptive SFJ is 13ms: 

 

 

 RR is 23ms: 

 



Simulations 

 Simulations more accurate 

 Programmed model of computer system 

 Clock is a variable 

 Gather statistics  indicating algorithm performance 

 Data to drive simulation gathered via 

 Random number generator according to probabilities 

 Distributions defined mathematically or empirically 

 Trace tapes record sequences of real events in real systems 

 

 



Evaluation of CPU Schedulers by Simulation 



Implementation 

 Even simulations have limited accuracy 

 Just implement new scheduler and test in real systems 

 High cost, high risk 

 Environments vary 

 Most flexible schedulers can be modified per-site or per-system 

 Or APIs to modify priorities 

 But again environments vary 

 

 

 



 

End of Lesson 5 

Chapter 6 


