
Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.3 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Traffic deadlock

7.4 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Funny deadlock

7.5 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Another deadlock

7.6 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlock: Game over

7.7 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Where do u go now?

7.8 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Good morning to you!

7.9 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlocks

 In a multiprogramming environment several processes
may compete for a finite number of resources.

 A process requests resources; and if the resources are
not available at that time the process enters a waiting
state.

 Sometimes, a waiting process is never again able to
change state, because the resources it has requested are
held by other waiting processes. This situation is called
a deadlock.

 The best illustration of a deadlock can be drawn from a
law passed by the Kansas legislature early in the 20th
century. It said, in part:

 "When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start up
again until the other has gone.“

7.10 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Train Deadlock

7.11 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resources

 A system consists of a finite number of resources

to be distributed among competing processes.

 The resources are partitioned into several types,

each consisting of some number of identical

instances.

 Memory space, CPU cycles, files, and I/O

devices (such as printers and DVD drives)

 If a system has two CPUs, then the resource

type CPU has two instances. Similarly, the

resource type printer may have five instances.

7.12 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

The Deadlock Problem

 A set of blocked processes each holding a

resource and waiting to acquire a resource held by

another process in the set.

 Example

 System has 2 disk drives.

 P1 and P2 each hold one disk drive and each needs

another one.

7.13 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Bridge Crossing Example

 Traffic only in one direction.

 Each section of a bridge can be viewed as a resource.

 If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).

 Several cars may have to be backed up if a deadlock

occurs.

 Starvation is possible.

7.14 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Threads in deadlock

7.15 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.16 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

System Model
 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 Request. If the request cannot be granted immediately (for

example, if the resource is being used by another process),

then the requesting process must wait until it can acquire the

resource.

 Use. The process can operate on the resource (for example,

if the resource is a printer, the process can print on the

printer).

 Release. The process releases the resource.

 The request and release of resources are system calls.

Examples are the request() and release() device, open()

and close() file, and allocate() and free() memory system

calls.

7.17 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Processes in deadlock

 A set of processes is in a deadlock state when every

process in the set is waiting for an event that can be

caused only by another process in the set.

 The events with which we are mainly concerned

here are resource acquisition and release.

 The resources may be either

physical resources (for example, printers, tape

drives, memory space, and CPU cycles) or

logical resources (for example, files,

semaphores, and monitors).

 However, other types of events may result in

deadlocks.

7.18 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

CD-RW deadlock

 To illustrate a deadlock state, consider a system with three

CD-RW drives.

 Suppose each of three processes holds one of these CD-

RW drives.

 If each process now requests another drive, the three

processes will be in a deadlock state.

 Each is waiting for the event "CD-RW is released," which

can be caused only by one of the other waiting

processes.

 The CD-RW example is a deadlock involving the same

resource type.

7.19 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.20 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a

resource.

 Hold and wait: a process holding at least one resource is

waiting to acquire additional resources held by other

processes.

 No preemption: a resource can be released only

voluntarily by the process holding it, after that process has

completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting

processes such that P0 is waiting for a resource that is held

by P1, P1 is waiting for a resource that is held by

 P2, …, Pn–1 is waiting for a resource that is held by

Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously:

7.21 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system.

 request edge – directed edge P1 Rj

 assignment edge – directed edge Rj Pi

A set of vertices V and a set of edges E.

7.22 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.23 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example of a Resource Allocation Graph

7.24 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Basic Facts

 If graph contains no cycles no deadlock.

 If graph contains a cycle

 if only one instance per resource type,

then deadlock.

 if several instances per resource type,

possibility of deadlock.

7.25 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource Allocation Graph With A Deadlock

7.26 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Graph With A Cycle But No Deadlock

7.27 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.28 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Methods for Handling Deadlocks

 Ensure that the system will never enter a

deadlock state.

 Allow the system to enter a deadlock state

and then recover.

 Ignore the problem and pretend that

deadlocks never occur in the system

7.29 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

From deadlock to restart

 If a system neither ensures that a deadlock will never occur

nor provides a mechanism for deadlock detection and

recovery, then we may arrive at a situation where the system

is in a deadlocked state yet has no way of recognizing

what has happened.

 In this case the undetected deadlock will result in

deterioration of the system's performance:

 because resources are being held by processes that

cannot run and

 because more and more processes, as they make

requests for resources, will enter a deadlocked state.

 Eventually, the system will stop functioning and will need to

be restarted manually.

7.30 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.31 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlock Prevention

 For a deadlock to occur, each of the four necessary

conditions must hold.

 By ensuring that at least one of these conditions

cannot hold, we can prevent the occurrence of a

deadlock.

 Deadlock-prevention algorithms, prevent

deadlocks by restraining how requests can be

made.

7.32 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Mutual Exclusion

 Mutual Exclusion – not required for sharable resources;

must hold for nonsharable resources.

 For example, a printer cannot be simultaneously

shared by several processes.

 Read-only files are a good example of a sharable

resource. If several processes attempt to open a read-

only file at the same time they can be granted

simultaneous access to the file.

 A process never needs to wait for a sharable resource.

 In general! however we cannot prevent deadlocks by

denying the mutual-exclusion condition, because some

resources are intrinsically non sharable.

7.33 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Hold and Wait

 Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources.

 Protocol 1: Require process to request and be allocated

all its resources before it begins execution, or

 Protocol 2: Allow process to request resources only

when the process has none.

7.34 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Hold and Wait

 Example: consider a process that copies data from a DVD drive to

a file on disk, sorts the file, and then prints the results to a printer.

 If all resources must be requested at the beginning of the

process, then the process must initially request the DVD drive,

disk file, and printer. It will hold the printer for its entire

execution, even though it needs the printer only at the end.

 The second method allows the process to request initially

only the DVD drive and disk file. It copies from the DVD drive to

the disk and then releases both the DVD drive and the disk file.

The process must then again request the disk file and the

printer. After copying the disk file to the printer, it releases these

two resources and terminates.

 Disadvantages: Low resource utilization and possible

starvation.

7.35 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

No Preemption

 If a process that is holding some resources requests
another resource that cannot be immediately allocated to it,
then all resources currently being held are released.

 Preempted resources are added to the list of resources
for which the process is waiting.

 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

 Alternatively, if a process requests some resources, we
first check whether they are available.

 If they are, we allocate them. If they are not, we check
whether they are allocated to some other process that is
waiting for additional resources.

 If so, we preempt the desired resources from the
waiting process and allocate them to the requesting
process.

7.36 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Circular wait

 One way to ensure that this condition never holds is to impose a

total ordering of all resource types and to require that each

process requests resources in an increasing order of

enumeration.

 For example, if the set of resource types R includes tape drives,

disk drives, and printers, then the function F might be defined as

follows:

F (tape drive) = 1

F (disk drive) = 5

F (printer) = 12

 Using the function F, a process that wants to use the tape

drive and printer at the same time must first request the tape

drive and then request the printer.

 Alternatively, we can require that, whenever a process requests

an instance of resource type Rj, it has released any resources Ri

such that F(Ri) >= F(Rj).

7.37 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.38 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlock Avoidance

 Simplest and most useful model requires that each

process declare the maximum number of resources of

each type that it may need.

 The deadlock-avoidance algorithm dynamically examines

the resource-allocation state to ensure that there can

never be a circular-wait condition.

 Resource-allocation state is defined by the number of

available and allocated resources, and the maximum

demands of the processes.

Requires that the system has some additional a priori information

available.

7.39 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Safe State

 When a process requests an available resource, system

must decide if immediate allocation leaves the system in a

safe state.

 System is in safe state if there exists a sequence <P1, P2,

…, Pn> of all the processes in the systems such that for

each Pi, the resources that Pi can still request can be

satisfied by currently available resources + resources

held by all the Pj, with j < i.

 That is:

 If Pi resource needs are not immediately available,

then Pi can wait until all Pj have finished.

 When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.

 When Pi terminates, Pi +1 can obtain its needed

resources, and so on.

7.40 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Basic Facts

 If a system is in safe state no deadlocks.

 If a system is in unsafe state possibility of

deadlock.

 Avoidance ensure that a system will never enter

an unsafe state.

7.41 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Safe, Unsafe , Deadlock State

7.42 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example

 Consider a system with 12 magnetic tape drives and three processes: P0,
P1, and P2. Process P0 requires 10 tape drives, process P1 may need as
many as 4 tape drives, and process P2 may need up to 9 tape drives.

 Suppose that, at time T0 we have:

 At time T0, the system is in a safe state. The sequence < P1, P0, P2>
satisfies the safety condition.

 The system can go from a safe state to an unsafe state. Suppose that, at
time T1, P2 requests and is allocated one more tape drive.

 The system is no longer in a safe state.

 Only process P1 can be allocated all its tape drives. Suppose it
returns all them and we have 4 tapes free!!!

 P0 may request other 5 tapes and wait

 P2 may request other 6 tapes and wait

7.43 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Avoidance algorithms

 Single instance of a resource type.

 Use a resource-allocation graph

 Multiple instances of a resource type.

 Use the banker’s algorithm

7.44 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource-Allocation Graph Scheme

 Claim edge Pi Rj indicated that process Pj may request

resource Rj; represented by a dashed line.

 Claim edge converts to request edge when a process requests

a resource.

 Request edge converted to an assignment edge when the

resource is allocated to the process.

 When a resource is released by a process, assignment edge

reconverts to a claim edge.

 Resources must be claimed a priori in the system.

7.45 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource-Allocation Graph

 Suppose that process Pi requests

resource Rj.

 The request can be granted only if

converting the request edge Pi -> Rj to an

assignment edge Rj -> Pi does not result

in the formation of a cycle in the

resource-allocation graph.

 Note that we check for safety by using a

cycle-detection algorithm.

 An algorithm for detecting a cycle in this

graph requires an order of n2 operations,

where n is the number of processes in the

system.

7.46 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Unsafe State In Resource-Allocation Graph

Suppose that P2 requests

R2. Although R2 is

currently free, we

cannot allocate it to P2,

since this action will

create a cycle in the graph

A cycle indicates that the

system is in an unsafe

state.

If P1 requests R2,

and P2 requests R1 , then

a deadlock will occur.

7.47 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Banker’s Algorithm (Djikstra)

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to wait.

 When a process gets all its resources it must return them in

a finite amount of time.

 The name was chosen because the algorithm could be used

in a banking system to ensure that the bank never allocated

its available cash in such a way that it could no longer

satisfy the needs of all its customers.

7.48 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If Available[j] = k,

there are k instances of resource type Rj available.

 Max: n x m matrix. If Max[i,j] = k, then process Pi

may request at most k instances of resource type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi

is currently allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may need

k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

7.49 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Safety Algorithm

 To simplify the presentation of the banker's algorithm, we next

establish some notation. Let X and Y be vectors of length n. We say

that X <= Y if and only if X[i] <= Y[i] for all i = 1, 2, ... , 11. For example,

if X (1,7,3,2) and Y = (0,3,2,1), then Y < X. Y < X if Y < X and Y /= X.

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1.

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

 This algorithm may require an order of m x n2 operations to

determine whether a state is safe.

7.50 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource-Request Algorithm for Process Pi

 We now describe the algorithm which determines if requests

can be safely granted.

 Request = request vector for process Pi. If Requesti [j] =
k then process Pi wants k instances of resource type Rj.

1. If Requesti Needi go to step 2. Otherwise, raise
error condition, since process has exceeded its
maximum claim.

2. If Requesti Available, go to step 3. Otherwise Pi
must wait, since resources are not available.

3. Pretend to allocate requested resources to Pi by
modifying the state as follows:

 Available = Available – Request;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

 If safe the resources are allocated to Pi.

 If unsafe Pi must wait, and the old resource-
allocation state is restored

7.51 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example of Banker’s Algorithm

 5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5 instances), and C (7 instances).

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

7.52 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example (Cont.)

 The content of the matrix Need is defined to be Max –

Allocation.

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4,

P2, P0> satisfies safety criteria.

7.53 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example: P1 Request (1,0,2)

 Check that Request Available (that is, (1,0,2) (3,3,2) true.

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 1 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>

satisfies safety requirement.

 Can request for (3,3,0) by P4 be granted? No. Resources not

available.

 Can request for (0,2,0) by P0 be granted? No. We go in unsafe

state.

7.54 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.55 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

 At this point, however we note that a detection-and-recovery
scheme requires overhead that includes:

 not only the run-time costs of maintaining the
necessary information and executing the detection
algorithm

 but also the potential losses inherent in recovering from
a deadlock.

7.56 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes.

 Pi Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle in

the graph. If there is a cycle, there exists a deadlock.

 Complexity: An algorithm to detect a cycle in a graph

requires an order of n2 operations, where n is the

number of vertices in the graph.

7.57 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

7.58 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Several Instances of a Resource Type

 Available: A vector of length m indicates the number

of available resources of each type.

 Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each

process.

 Request: An n x m matrix indicates the current request

of each process. If Request [i, j] = k, then process Pi is

requesting k more instances of resource type. Rj.

7.59 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,

respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

7.60 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is

in deadlock state. Moreover, if Finish[i] == false, then Pi is

deadlocked.

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state.

7.61 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

 No deadlock: Sequence <P0, P2, P3, P1, P4> will result in

Finish[i] = true for all i.

7.62 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Example (Cont.)

 P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but

insufficient resources to fulfill other processes requests.

 Deadlock exists, consisting of processes P1, P2, P3, and

P4.

7.63 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 If detection algorithm is invoked arbitrarily, there may be

many cycles in the resource graph and so we would not be

able to tell which of the many deadlocked processes

“caused” the deadlock.

 If deadlocks occur frequently, then the detection algorithm

should be invoked frequently.

 Resources allocated to deadlocked processes will be idle

until the deadlock can be broken.

 In addition, the number of involved processes in the

deadlock cycle may grow.

7.64 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Detection-Algorithm Usage

 Deadlocks occur only when some process makes a

request that cannot be granted immediately.

 This request may be the final request that

completes a chain of waiting processes.

 In the extreme, we can invoke the deadlock

detection algorithm every time a request for

allocation cannot be granted immediately.

In this case, we can identify not only the

deadlocked set of processes but also the

specific process that "caused" the deadlock.

7.65 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Detection-Algorithm Computational Overhead

 If the deadlock-detection algorithm is invoked for every resource

request, this will incur a considerable overhead in computation

time.

 A less expensive alternative is simply to invoke the algorithm

at less frequent intervals –f or example, once per hour or

whenever CPU utilization drops below 40 percent.

 (A deadlock eventually cripples system throughput and

causes CPU utilization to drop.)

 If the detection algorithm is invoked at arbitrary points in time,

there may be many cycles in the resource graph.

 In this case, we would generally not be able to tell which of

the many deadlocked processes "caused“ the deadlock.

7.66 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.67 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Deadlock recovery

 When a detection algorithm determines that a deadlock

exists, several alternatives are available.

 One possibility is to inform the operator that a deadlock

has occurred and to let him deal with the deadlock

manually.

 Another possibility is to let the system recover from the

deadlock automatically.

There are two options for breaking a deadlock:

– Simply to abort one or more processes to

break the circular wait.

– The other is to preempt some resources from

one or more of the deadlocked processes.

7.68 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes.

 This method clearly will break the deadlock cycle, but at

great expense; the deadlocked processes may have

computed for a long time, and the results of these

partial computations must be discarded and probably

will have to be recomputed later.

 Abort one process at a time until the deadlock cycle is

eliminated.

 This method incurs considerable overhead, since, after

each process is aborted, a deadlock-detection

algorithm must be invoked to determine whether any

processes are still deadlocked.

7.69 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Order to abort processes

 Aborting a process may not be easy.

 If the process was in the midst of updating a file,

terminating it will leave that file in an incorrect state.

 Similarly, if the process was in the midst of

printing data on a printer, the system must reset

the printer to a correct state before printing the next

job.

7.70 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Minimum cost of process abortion

 If the partial termination method is used, then we must determine

which deadlocked process (or processes) should be terminated.

 This determination is a policy decision, similar to CPU-scheduling

decisions. The question is basically an economic one; we should abort

those whose termination will incur the minimum cost.

 Unfortunately, the term minimum cost is not a precise one.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to

completion.

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated.

 Is process interactive or batch?

7.71 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Recovery from Deadlock: Resource Preemption

 To eliminate deadlocks using resource preemption, we:

 successively preempt some resources from processes

and

 give these resources to other processes until the

deadlock cycle is broken.

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process from

that state.

 Starvation – same process may always be picked as

victim, include number of rollback in cost factor.

7.72 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Selecting a victim in Resource preemption

 Selecting a victim.

 Which resources and which processes are to be

preempted?

 As in process termination, we must determine the

order of preemption to minimize cost.

 Cost factors may include such parameters as:

the number of resources a deadlocked process

is holding

amount of time the process has thus far

consumed during its execution.

7.73 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Rollback in Resource preemption

 If we preempt a resource from a process, what should be

done with that process?

 Clearly, it cannot continue with its normal execution if it is

missing some needed resource.

 We must roll back the process to some safe state and

restart it from that state.

 Since, in general, it is difficult to determine what a safe state

is, the simplest solution is a total rollback:

 Abort the process and then restart it.

 Although it is more effective to roll back the process only

as far as necessary to break the deadlock, this method

requires the system to keep more information about

the state of all running processes.

7.74 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Starvation in Resource preemption

 How do we ensure that starvation will not occur?

 That is, how can we guarantee that resources will not always

be preempted from the same process?

 In a system where victim selection is based primarily on

cost factors, it may happen that the same process is

always picked as a victim.

 As a result, this process never completes its designated task, a

starvation situation that must be dealt with in any practical

system.

 Clearly, we must ensure that a process can be picked as a

victim only a (small) finite number of times. The most

common solution is to include the number of rollbacks in the

cost factor. (a kind of Aging)

7.75 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

Readings

 Silberschatz. Chapter 7.

End of Chapter 7

7.77 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005

What about deadlocks in

distributed systems?

 A good question for Master students

Orchestra

