
Chapter 7:  Deadlocks 



7.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005 

Chapter 7:  Deadlocks 

 The Deadlock Problem 

 System Model 

 Deadlock Characterization 

 Methods for Handling Deadlocks 

 Deadlock Prevention 

 Deadlock Avoidance 

 Deadlock Detection  

 Recovery from Deadlock  



7.3 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts - 7th Edition, Feb 14, 2005 

Traffic deadlock 
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Funny deadlock 
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Another deadlock 
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Deadlock: Game over 
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Where do u go now? 
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Good morning to you! 
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Deadlocks 

 In a multiprogramming environment several processes 
may compete for a finite number of resources.  

 A process requests resources; and if the resources are 
not available at that time the process enters a waiting 
state.  

 Sometimes, a waiting process is never again able to 
change state, because the resources it has requested are 
held by other waiting processes. This situation is called 
a deadlock. 

 The best illustration of a deadlock can be drawn from a 
law passed by the Kansas legislature early in the 20th 
century. It said, in part:   

 "When two trains approach each other at a crossing, 
both shall come to a full stop and neither shall start up 
again until the other has gone.“  
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Train Deadlock 
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Resources 

 A system consists of a finite number of resources 

to be distributed among competing processes.  

 The resources are partitioned into several types, 

each consisting of some number of identical 

instances. 

 Memory space, CPU cycles, files, and I/O 

devices (such as printers and DVD drives) 

 If a system has two CPUs, then the resource 

type CPU has two instances. Similarly, the 

resource type printer may have five instances. 
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The Deadlock Problem 

 A set of blocked processes each holding a 

resource and waiting to acquire a resource held by 

another process in the set. 

 Example  

 System has 2 disk drives. 

 P1 and P2 each hold one disk drive and each needs 

another one. 
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Bridge Crossing Example 

 Traffic only in one direction. 

 Each section of a bridge can be viewed as a resource. 

 If a deadlock occurs, it can be resolved if one car backs 

up (preempt resources and rollback). 

 Several cars may have to be backed up if a deadlock 

occurs. 

 Starvation is possible. 
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Threads in deadlock 
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System Model 
 Resource types R1, R2, . . ., Rm 

CPU cycles, memory space, I/O devices 

 Each resource type Ri has Wi instances. 

 Each process utilizes a resource as follows: 

 Request. If the request cannot be granted immediately (for 

example, if the resource is being used by another process), 

then the requesting process must wait until it can acquire the 

resource. 

 Use. The process can operate on the resource (for example, 

if the resource is a printer, the process can print on the 

printer). 

 Release. The process releases the resource. 

 The request and release of resources are system calls.  

Examples are the request() and release() device, open() 

and close() file, and allocate() and free() memory system 

calls. 
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Processes in deadlock 

 A set of processes is in a deadlock state when every 

process in the set is waiting for an event that can be 

caused only by another process in the set.  

 The events with which we are mainly concerned 

here are resource acquisition and release.  

 The resources may be either  

physical resources (for example, printers, tape 

drives, memory space, and CPU cycles) or  

logical resources (for example, files, 

semaphores, and monitors).  

 However, other types of events may result in 

deadlocks. 
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CD-RW deadlock 

 To illustrate a deadlock state, consider a system with three 

CD-RW drives. 

 Suppose each of three processes holds one of these CD- 

RW drives.  

 If each process now requests another drive, the three 

processes will be in a deadlock state.  

 Each is waiting for the event "CD-RW is released," which 

can be caused only by one of the other waiting 

processes.  

 The CD-RW example is a deadlock involving the same 

resource type. 
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Deadlock Characterization 

 Mutual exclusion:  only one process at a time can use a 

resource. 

 Hold and wait:  a process holding at least one resource is 

waiting to acquire additional resources held by other 

processes. 

 No preemption:  a resource can be released only 

voluntarily by the process holding it, after that process has 

completed its task. 

 Circular wait:  there exists a set {P0, P1, …, P0} of waiting 

processes such that P0 is waiting for a resource that is held 

by P1, P1 is waiting for a resource that is held by  

 P2, …, Pn–1 is waiting for a resource that is held by  

Pn, and Pn is waiting for a resource that is held by P0. 

 

Deadlock can arise if four conditions hold simultaneously: 
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Resource-Allocation Graph 

 V is partitioned into two types: 

 P = {P1, P2, …, Pn}, the set consisting of all the 

processes in the system. 

 

 R = {R1, R2, …, Rm}, the set consisting of all resource 

types in the system. 

 

 request edge – directed edge P1  Rj 

 assignment edge – directed edge Rj  Pi 

A set of vertices V and a set of edges E. 
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Resource-Allocation Graph (Cont.) 

 Process 
 

 

 

 Resource Type with 4 instances 

 

 

 Pi requests instance of Rj 

 

 

 Pi is holding an instance of Rj 

Pi 

Pi 

Rj 

Rj 
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Example of a Resource Allocation Graph 
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Basic Facts 

 If graph contains no cycles  no deadlock. 

 

 If graph contains a cycle  

 if only one instance per resource type, 

then deadlock. 

 if several instances per resource type, 

possibility of deadlock. 
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Resource Allocation Graph With A Deadlock 
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Graph With A Cycle But No Deadlock 
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Methods for Handling Deadlocks 

 Ensure that the system will never enter a 

deadlock state. 

 

 Allow the system to enter a deadlock state 

and then recover. 

 

 Ignore the problem and pretend that 

deadlocks never occur in the system 
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From deadlock to restart 

 If a system neither ensures that a deadlock will never occur 

nor provides a mechanism for deadlock detection and 

recovery, then we may arrive at a situation where the system 

is in a deadlocked state yet has no way of recognizing 

what has happened.  

 In this case the undetected deadlock will result in 

deterioration of the system's performance:  

 because resources are being held by processes that 

cannot run and  

 because more and more processes, as they make 

requests for resources, will enter a deadlocked state.  

 Eventually, the system will stop functioning and will need to 

be restarted manually. 
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Deadlock Prevention 

 For a deadlock to occur, each of the four necessary 

conditions must hold.  

 By ensuring that at least one of these conditions 

cannot hold, we can prevent the occurrence of a 

deadlock. 

 Deadlock-prevention algorithms, prevent 

deadlocks by restraining how requests can be 

made. 
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Mutual Exclusion 

 Mutual Exclusion – not required for sharable resources; 

must hold for nonsharable resources. 

 For example, a printer cannot be simultaneously 

shared by several processes. 

 Read-only files are a good example of a sharable 

resource. If several processes attempt to open a read-

only file at the same time they can be granted 

simultaneous access to the file.  

 A process never needs to wait for a sharable resource.  

 In general! however we cannot prevent deadlocks by 

denying the mutual-exclusion condition, because some 

resources are intrinsically non sharable. 
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Hold and Wait 

 Hold and Wait – must guarantee that whenever a process 

requests a resource, it does not hold any other resources. 

 Protocol 1: Require process to request and be allocated 

all its resources before it begins execution, or  

 Protocol 2: Allow process to request resources only 

when the process has none. 
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Hold and Wait 

 Example: consider a process that copies data from a DVD drive to 

a file on disk, sorts the file, and then prints the results to a printer.  

 If all resources must be requested at the beginning of the 

process, then the process must initially request the DVD drive, 

disk file, and printer. It will hold the printer for its entire 

execution, even though it needs the printer only at the end. 

 The second method allows the process to request initially 

only the DVD drive and disk file. It copies from the DVD drive to 

the disk and then releases both the DVD drive and the disk file. 

The process must then again request the disk file and the 

printer. After copying the disk file to the printer, it releases these 

two resources and terminates. 

 Disadvantages: Low resource utilization and possible 

starvation. 
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No Preemption 

 If a process that is holding some resources requests 
another resource that cannot be immediately allocated to it, 
then all resources currently being held are released. 

 Preempted resources are added to the list of resources 
for which the process is waiting. 

 Process will be restarted only when it can regain its old 
resources, as well as the new ones that it is requesting. 

 Alternatively, if a process requests some resources, we 
first check whether they are available.  

 If they are, we allocate them. If they are not, we check 
whether they are allocated to some other process that is 
waiting for additional resources.  

 If so, we preempt the desired resources from the 
waiting process and allocate them to the requesting 
process. 
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Circular wait 

 One way to ensure that this condition never holds is to impose a 

total ordering of all resource types and to require that each 

process requests resources in an increasing order of 

enumeration. 

 For example, if the set of resource types R includes tape drives, 

disk drives, and printers, then the function F might be defined as 

follows: 

F (tape drive) = 1 

F (disk drive) = 5 

F (printer)  = 12 

 Using the function F, a process that wants to use the tape 

drive and printer at the same time must first request the tape 

drive and then request the printer. 

 Alternatively, we can require that, whenever a process requests 

an instance of resource type Rj, it has released any resources Ri 

such that F(Ri) >= F(Rj). 
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Deadlock Avoidance 

 Simplest and most useful model requires that each 

process declare the maximum number of resources of 

each type that it may need. 

 

 The deadlock-avoidance algorithm dynamically examines 

the resource-allocation state to ensure that there can 

never be a circular-wait condition. 

 

 Resource-allocation state is defined by the number of 

available and allocated resources, and the maximum 

demands of the processes. 

Requires that the system has some additional a priori information  

available. 
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Safe State 

 When a process requests an available resource, system 

must decide if immediate allocation leaves the system in a 

safe state. 

 System is in safe state if there exists a sequence <P1, P2, 

…, Pn> of all the  processes in the systems such that for 

each Pi, the resources that Pi can still request can be 

satisfied by currently available resources + resources 

held by all the Pj, with j < i. 

 That is: 

 If Pi resource needs are not immediately available, 

then Pi can wait until all Pj have finished. 

 When Pj is finished, Pi can obtain needed resources, 

execute, return allocated resources, and terminate.  

 When Pi terminates, Pi +1 can obtain its needed 

resources, and so on.  
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Basic Facts 

 If a system is in safe state  no deadlocks. 

 

 If a system is in unsafe state  possibility of 

deadlock. 

 

 Avoidance  ensure that a system will never enter 

an unsafe state.  
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Safe, Unsafe , Deadlock State  
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Example 

 Consider a system with 12 magnetic tape drives and three processes: P0, 
P1, and P2. Process P0 requires 10 tape drives, process P1 may need as 
many as 4 tape drives, and process P2 may need up to 9 tape drives. 

 Suppose that, at time T0 we have: 

 

 

 

 

 

 At time T0, the system is in a safe state. The sequence < P1, P0, P2> 
satisfies the safety condition. 

 The system can go from a safe state to an unsafe state. Suppose that, at 
time T1, P2 requests and is allocated one more tape drive. 

 The system is no longer in a safe state. 

 Only process P1 can be allocated all its tape drives. Suppose it 
returns all them and we have 4 tapes free!!! 

 P0 may request other 5 tapes and wait 

 P2 may request other 6 tapes and wait 
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Avoidance algorithms 

 Single instance of a resource type.   

 Use a resource-allocation graph 

 

 Multiple instances of a resource type.   

 Use the banker’s algorithm 
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Resource-Allocation Graph Scheme 

 Claim edge Pi  Rj indicated that process Pj may request 

resource Rj; represented by a dashed line. 

 

 Claim edge converts to request edge when a process requests 

a resource. 

 

 Request edge converted to an assignment edge when the  

resource is allocated to the process. 

 

 When a resource is released by a process, assignment edge 

reconverts to a claim edge. 

 

 Resources must be claimed a priori in the system. 
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Resource-Allocation Graph 

 Suppose that process Pi requests 

resource Rj.  

 The request can be granted only if 

converting the request edge Pi -> Rj to an 

assignment edge Rj -> Pi does not result 

in the formation of a cycle in the 

resource-allocation graph.  

 Note that we check for safety by using a 

cycle-detection algorithm.  

 An algorithm for detecting a cycle in this 

graph requires an order of n2 operations, 

where n is the number of processes in the 

system. 
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Unsafe State In Resource-Allocation Graph 

Suppose that P2 requests 

R2. Although R2 is 

currently free, we 

cannot allocate it to P2, 

since this action will 

create a cycle in the graph 

A cycle indicates that the 

system is in an unsafe 

state.  

 

If P1 requests R2, 

and P2 requests R1 , then 

a deadlock will occur. 
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Banker’s Algorithm (Djikstra) 

 Multiple instances. 

 

 Each process must a priori claim maximum use. 

 

 When a process requests a resource it may have to wait.   

 

 When a process gets all its resources it must return them in 

a finite amount of time. 

 

 The name was chosen because the algorithm could be used 

in a banking system to ensure that the bank never allocated 

its available cash in such a way that it could no longer 

satisfy the needs of all its customers.  
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Data Structures for the Banker’s Algorithm  

 Available:  Vector of length m. If Available[j] = k, 

there are k instances of resource type Rj  available. 

 Max: n x m matrix.  If Max[i,j] = k, then process Pi 

may request at most k instances of resource type Rj. 

 Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi 

is currently allocated k instances of Rj. 

 Need:  n x m matrix. If Need[i,j] = k, then Pi may need 

k more instances of Rj to complete its task. 

 

Need [i,j] = Max[i,j] – Allocation [i,j]. 

Let n = number of processes, and m = number of resources types.  
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Safety Algorithm 

 To simplify the presentation of the banker's algorithm, we next 

establish some notation. Let X and Y be vectors of length n. We say 

that X <= Y if and only if X[i] <= Y[i] for all i = 1, 2, ... , 11. For example, 

if X (1,7,3,2) and Y = (0,3,2,1), then Y < X. Y < X if Y < X and Y /= X. 

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize: 

Work = Available 

Finish [i] = false for i = 0, 1, …, n- 1. 

2. Find an i such that both:  

(a) Finish [i] = false 

(b) Needi  Work 

If no such i exists, go to step 4. 

3. Work = Work + Allocationi 
Finish[i] = true 
go to step 2. 

4. If Finish [i] == true for all i, then the system is in a safe state. 

 This algorithm may require an order of m x n2 operations to 

determine whether a state is safe. 
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Resource-Request Algorithm for Process Pi 

 We now describe the algorithm which determines if requests 

can be safely granted. 

 Request = request vector for process Pi.  If Requesti [j] = 
k then process Pi wants k instances of resource type Rj. 

1. If Requesti  Needi go to step 2.  Otherwise, raise 
error condition, since process has exceeded its 
maximum claim. 

2. If Requesti  Available, go to step 3.  Otherwise Pi  
must wait, since resources are not available. 

3. Pretend to allocate requested resources to Pi by 
modifying the state as follows: 

  Available = Available  – Request; 

  Allocationi = Allocationi + Requesti; 

  Needi = Needi – Requesti; 

 If safe  the resources are allocated to Pi.  

 If unsafe  Pi must wait, and the old resource-
allocation state is restored 
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Example of Banker’s Algorithm 

 5 processes P0  through P4;  

      3 resource types: 

              A (10 instances),  B (5 instances), and C (7 instances). 

 Snapshot at time T0: 

   Allocation Max Available 

   A B C A B C  A B C 

  P0 0 1 0 7 5 3  3 3 2 

   P1 2 0 0  3 2 2   

   P2 3 0 2  9 0 2 

   P3 2 1 1  2 2 2 

   P4 0 0 2 4 3 3     
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Example (Cont.) 

 The content of the matrix Need is defined to be Max – 

Allocation. 

 

   Need 

   A B C 

   P0 7 4 3  

   P1 1 2 2  

   P2 6 0 0  

   P3 0 1 1 

   P4 4 3 1  

 

 The system is in a safe state since the sequence < P1, P3, P4, 

P2, P0> satisfies safety criteria.  
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Example:  P1 Request (1,0,2) 

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true. 

   Allocation Need Available 

   A B C A B C A B C  

  P0 0 1 0  7 4 3  2 3 0 

  P1 3 0 2 0 2 0   

  P2 3 0 1  6 0 0  

  P3 2 1 1  0 1 1 

  P4 0 0 2  4 3 1  

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 

satisfies safety requirement.  

 Can request for (3,3,0) by P4 be granted? No. Resources not 

available. 

 Can request for (0,2,0) by P0 be granted? No. We go in unsafe 

state. 
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Deadlock Detection 

 Allow system to enter deadlock state  
 

 Detection algorithm 
 

 Recovery scheme 

 

 At this point, however we note that a detection-and-recovery 
scheme requires overhead that includes: 

 not only the run-time costs of maintaining the 
necessary information and executing the detection 
algorithm  

 but also the potential losses inherent in recovering from 
a deadlock. 
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Single Instance of Each Resource Type 

 Maintain wait-for graph 

 Nodes are processes. 

 Pi  Pj   if Pi is waiting for Pj. 

 

 Periodically invoke an algorithm that searches for a cycle in 

the graph. If there is a cycle, there exists a deadlock. 

 

 Complexity: An algorithm to detect a cycle in a graph 

requires an order of n2 operations, where n is the 

number of vertices in the graph.  
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Resource-Allocation Graph and Wait-for Graph 

Resource-Allocation Graph Corresponding wait-for graph 
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Several Instances of a Resource Type 

 Available:  A vector of length m indicates the number 

of available resources of each type. 

 

 Allocation:  An n x m matrix defines the number of 

resources of each type currently allocated to each 

process. 

 

 Request:  An n x m matrix indicates the current request  

of each process.  If Request [i, j] = k, then process Pi is 

requesting k more instances of resource type. Rj. 
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Detection Algorithm 

1. Let Work and Finish be vectors of length m and n, 

respectively Initialize: 

(a) Work = Available 

(b) For i = 1,2, …, n, if Allocationi  0, then  

Finish[i] = false;otherwise, Finish[i] = true. 

2. Find an index i such that both: 

(a) Finish[i] == false 

(b) Requesti  Work 

 

If no such i exists, go to step 4.  
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Detection Algorithm (Cont.) 

3. Work = Work + Allocationi 

Finish[i] = true 

go to step 2. 

 

4. If Finish[i] == false, for some i, 1  i   n, then the system is 

in deadlock state. Moreover, if Finish[i] == false, then Pi is 

deadlocked. 

  

Algorithm requires an order of O(m x n2) operations to detect 

whether the system is in deadlocked state.  
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Example of Detection Algorithm 

 Five processes P0 through P4; three resource types  

A (7 instances), B (2 instances), and C (6 instances). 

 Snapshot at time T0: 

    Allocation Request Available 

   A B C  A B C  A B C 

  P0 0 1 0  0 0 0  0 0 0 

  P1 2 0 0  2 0 2 

  P2 3 0 3 0 0 0  

  P3 2 1 1  1 0 0  

  P4 0 0 2  0 0 2 

 No deadlock: Sequence <P0, P2, P3, P1, P4> will result in 

Finish[i] = true for all i.  
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Example (Cont.) 

 P2 requests an additional instance of type C. 

   Request 

   A B C 

   P0 0 0 0 

   P1 2 0 1 

  P2 0 0 1 

  P3 1 0 0  

  P4 0 0 2 

 State of system? 

 Can reclaim resources held by process P0, but 

insufficient resources to fulfill other processes requests. 

 Deadlock exists, consisting of processes P1,  P2, P3, and 

P4. 
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Detection-Algorithm Usage 

 When, and how often, to invoke depends on: 

 How often a deadlock is likely to occur? 

 How many processes will need to be rolled back? 

 

 If detection algorithm is invoked arbitrarily, there may be 

many cycles in the resource graph and so we would not be 

able to tell which of the many deadlocked processes 

“caused” the deadlock. 

 If deadlocks occur frequently, then the detection algorithm 

should be invoked frequently.  

 Resources allocated to deadlocked processes will be idle 

until the deadlock can be broken.  

 In addition, the number of involved processes in the 

deadlock cycle may grow. 
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Detection-Algorithm Usage 

 Deadlocks occur only when some process makes a 

request that cannot be granted immediately.  

 This request may be the final request that 

completes a chain of waiting processes.  

 In the extreme, we can invoke the deadlock 

detection algorithm every time a request for 

allocation cannot be granted immediately. 

In this case, we can identify not only the 

deadlocked set of processes but also the 

specific process that "caused" the deadlock. 
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Detection-Algorithm Computational Overhead 

 If the deadlock-detection algorithm is invoked for every resource 

request, this will incur a considerable overhead in computation 

time.  

 A less expensive alternative is simply to invoke the algorithm 

at less frequent intervals –f or example, once per hour or 

whenever CPU utilization drops below 40 percent.  

 (A deadlock eventually cripples system throughput and 

causes CPU utilization to drop.)  

 If the detection algorithm is invoked at arbitrary points in time, 

there may be many cycles in the resource graph.  

 In this case, we would generally not be able to tell which of 

the many deadlocked processes "caused“ the deadlock. 
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Chapter 7:  Deadlocks 

 The Deadlock Problem 

 System Model 

 Deadlock Characterization 

 Methods for Handling Deadlocks 

 Deadlock Prevention 

 Deadlock Avoidance 

 Deadlock Detection  

 Recovery from Deadlock  
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Deadlock recovery 

 When a detection algorithm determines that a deadlock 

exists, several alternatives are available.  

 One possibility is to inform the operator that a deadlock 

has occurred and to let him deal with the deadlock 

manually.  

 Another possibility is to let the system recover from the 

deadlock automatically.  

There are two options for breaking a deadlock: 

– Simply to abort one or more processes to 

break the circular wait.  

– The other is to preempt some resources from 

one or more of the deadlocked processes. 
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Recovery from Deadlock:  Process Termination 

 Abort all deadlocked processes. 

 This method clearly will break the deadlock cycle, but at 

great expense; the deadlocked processes may have 

computed for a long time, and the results of these 

partial computations must be discarded and probably 

will have to be recomputed later. 

 Abort one process at a time until the deadlock cycle is 

eliminated. 

 This method incurs considerable overhead, since, after 

each process is aborted, a deadlock-detection 

algorithm must be invoked to determine whether any 

processes are still deadlocked. 
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Order to abort processes 

 Aborting a process may not be easy.  

 If the process was in the midst of updating a file, 

terminating it will leave that file in an incorrect state.  

 Similarly, if the process was in the midst of 

printing data on a printer, the system must reset 

the printer to a correct state before printing the next 

job. 
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Minimum cost of process abortion 

 If the partial termination method is used, then we must determine 

which deadlocked process (or processes) should be terminated.  

 This determination is a policy decision, similar to CPU-scheduling 

decisions. The question is basically an economic one; we should abort 

those whose termination will incur the minimum cost.  

 Unfortunately, the term minimum cost is not a precise one. 

 In which order should we choose to abort? 

 Priority of the process. 

 How long process has computed, and how much longer to 

completion. 

 Resources the process has used. 

 Resources process needs to complete. 

 How many processes will need to be terminated.  

 Is process interactive or batch? 
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Recovery from Deadlock: Resource Preemption 

 To eliminate deadlocks using resource preemption, we: 

 successively preempt some resources from processes 

and 

 give these resources to other processes until the 

deadlock cycle is broken. 

 

 Selecting a victim – minimize cost. 

 

 Rollback – return to some safe state, restart process from 

that state. 

 

 Starvation –  same process may always be picked as 

victim, include number of rollback in cost factor. 
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Selecting a victim in Resource preemption 

 Selecting a victim.  

 Which resources and which processes are to be 

preempted? 

 As in process termination, we must determine the 

order of preemption to minimize cost.  

 Cost factors may include such parameters as: 

the number of resources a deadlocked process 

is holding 

amount of time the process has thus far 

consumed during its execution. 
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Rollback in Resource preemption 

 If we preempt a resource from a process, what should be 

done with that process?  

 Clearly, it cannot continue with its normal execution if it is 

missing some needed resource.  

 We must roll back the process to some safe state and 

restart it from that state. 

 Since, in general, it is difficult to determine what a safe state 

is, the simplest solution is a total rollback:  

 Abort the process and then restart it.  

 Although it is more effective to roll back the process only 

as far as necessary to break the deadlock, this method 

requires the system to keep more information about 

the state of all running processes. 
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Starvation in Resource preemption 

 How do we ensure that starvation will not occur?  

 That is, how can we guarantee that resources will not always 

be preempted from the same process? 

 In a system where victim selection is based primarily on 

cost factors, it may happen that the same process is 

always picked as a victim.  

 As a result, this process never completes its designated task, a 

starvation situation that must be dealt with in any practical 

system.  

 Clearly, we must ensure that a process can be picked as a 

victim only a (small) finite number of times. The most 

common solution is to include the number of rollbacks in the 

cost factor. (a kind of Aging) 
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Readings 

 Silberschatz. Chapter 7. 



End of Chapter 7 
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What about deadlocks in  

distributed systems? 

 A good question for Master students 

Orchestra 


